A synthesis of methane emissions from 71 northern, temperate, and subtropical wetlands.

نویسندگان

  • Merritt R Turetsky
  • Agnieszka Kotowska
  • Jill Bubier
  • Nancy B Dise
  • Patrick Crill
  • Ed R C Hornibrook
  • Kari Minkkinen
  • Tim R Moore
  • Isla H Myers-Smith
  • Hannu Nykänen
  • David Olefeldt
  • Janne Rinne
  • Sanna Saarnio
  • Narasinha Shurpali
  • Eeva-Stiina Tuittila
  • J Michael Waddington
  • Jeffrey R White
  • Kimberly P Wickland
  • Martin Wilmking
چکیده

Wetlands are the largest natural source of atmospheric methane. Here, we assess controls on methane flux using a database of approximately 19 000 instantaneous measurements from 71 wetland sites located across subtropical, temperate, and northern high latitude regions. Our analyses confirm general controls on wetland methane emissions from soil temperature, water table, and vegetation, but also show that these relationships are modified depending on wetland type (bog, fen, or swamp), region (subarctic to temperate), and disturbance. Fen methane flux was more sensitive to vegetation and less sensitive to temperature than bog or swamp fluxes. The optimal water table for methane flux was consistently below the peat surface in bogs, close to the peat surface in poor fens, and above the peat surface in rich fens. However, the largest flux in bogs occurred when dry 30-day averaged antecedent conditions were followed by wet conditions, while in fens and swamps, the largest flux occurred when both 30-day averaged antecedent and current conditions were wet. Drained wetlands exhibited distinct characteristics, e.g. the absence of large flux following wet and warm conditions, suggesting that the same functional relationships between methane flux and environmental conditions cannot be used across pristine and disturbed wetlands. Together, our results suggest that water table and temperature are dominant controls on methane flux in pristine bogs and swamps, while other processes, such as vascular transport in pristine fens, have the potential to partially override the effect of these controls in other wetland types. Because wetland types vary in methane emissions and have distinct controls, these ecosystems need to be considered separately to yield reliable estimates of global wetland methane release.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Halving of the northern wetland CH4 source by a large Icelandic volcanic eruption

[1] Northern temperate and high-latitude wetlands are a major source of the greenhouse gas methane (CH4). Here, we estimate the sensitivity in the strength of this source to the effects of large Icelandic volcanic eruptions such as the Laki eruption of 1783–1784. We applied spatially explicit modeled sulfate aerosol and S deposition fields from a Laki eruption simulation to a climate-sensitive ...

متن کامل

CarbonTracker-CH4: an assimilation system for estimating emissions of atmospheric methane

We describe an assimilation system for atmospheric methane (CH4), CarbonTracker-CH4, and demonstrate the diagnostic value of global or zonally averaged CH4 abundances for evaluating the results. We show that CarbonTracker-CH4 is able to simulate the observed zonal average mole fractions and capture inter-annual variability in emissions quite well at high northern latitudes (53–90 N). In contras...

متن کامل

Halving of the northern wetland CH

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online's data policy on reuse of materials please consult the policies page. [1] Northern temperate and high-latitude wetlands are a major source of the greenhouse gas methane (CH 4). Here, we estimate the sensitivity in the strengt...

متن کامل

Influence of Different Plant Species on Methane Emissions from Soil in a Restored Swiss Wetland

Plants are a major factor influencing methane emissions from wetlands, along with environmental parameters such as water table, temperature, pH, nutrients and soil carbon substrate. We conducted a field experiment to study how different plant species influence methane emissions from a wetland in Switzerland. The top 0.5 m of soil at this site had been removed five years earlier, leaving a subst...

متن کامل

Rising methane emissions from northern wetlands associated with sea ice decline

The Arctic is rapidly transitioning toward a seasonal sea ice-free state, perhaps one of the most apparent examples of climate change in the world. This dramatic change has numerous consequences, including a large increase in air temperatures, which in turn may affect terrestrial methane emissions. Nonetheless, terrestrial and marine environments are seldom jointly analyzed. By comparing satell...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Global change biology

دوره 20 7  شماره 

صفحات  -

تاریخ انتشار 2014